skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ajmani, Leah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 23, 2026
  2. Applied machine learning (ML) has not yet coalesced on standard practices for research ethics. For ML that predicts mental illness using social media data, ambiguous ethical standards can impact peoples’ lives because of the area’s sensitivity and material con- sequences on health. Transparency of current ethics practices in research is important to document decision-making and improve research practice. We present a systematic literature review of 129 studies that predict mental illness using social media data and ML, and the ethics disclosures they make in research publications. Rates of disclosure are going up over time, but this trend is slow moving – it will take another eight years for the average paper to have coverage on 75% of studied ethics categories. Certain practices are more readily adopted, or "stickier", over time, though we found pri- oritization of data-driven disclosures rather than human-centered. These inconsistently reported ethical considerations indicate a gap between what ML ethicists believe ought to be and what actually is done. We advocate for closing this gap through increased trans- parency of practice and formal mechanisms to support disclosure. 
    more » « less
  3. How does presenting comments in a news article affect the ways that readers engage with and retain information about news? This paper presents results from a controlled experiment investigating effects related to different strategies for promoting discussion at news websites (N=336 participants). The strategies include highlighting specific comments about a data visualization, providing prompts with the comments, and annotating prompts on the visualization. By comparison to a simple list of comments (baseline), our analysis found that annotations contributed to higher levels of participant engagement in the discussion, yet lower levels of knowledge retention related to the article. These findings raise new considerations about whether and how to integrate discussion content into news and points toward future content moderation systems that assist in representing and eliciting discussion at news websites. 
    more » « less
  4. Due to challenges around low-quality comments and misinformation, many news outlets have opted to turn off commenting features on their websites. The New York Times (NYT), on the other hand, has continued to scale up its online discussion resources to reach large audiences. Through interviews with the NYT moderation team, we present examples of how moderators manage the first ~24 hours of online discussion after a story breaks, while balancing concerns about journalistic credibility. We discuss how managing comments at the NYT is not merely a matter of content regulation, but can involve reporting from the "community beat" to recognize emerging topics and synthesize the multiple perspectives in a discussion to promote community. We discuss how other news organizations---including those lacking moderation resources---might appropriate the strategies and decisions offered by the NYT. Future research should investigate strategies to share and update the information generated about topics in the news through the course of content moderation. 
    more » « less